기본 콘텐츠로 건너뛰기

진단 성능 평가 지표

진단 성능 평가 지표

혼동행렬(Confusion Matrix)

진단 장비의 성능을 파악하기 위하여 질병의 유무를 알고 있는 사람들을 대상으로 진단을 수행하고 아래와 같이 혼동행렬을 작성합니다.

  • A: 진양성(True Positive) 수
  • B: 위양성(False Positive) 수
  • C: 위음성(False Negative) 수
  • D: 진음성(True Negative) 수

성능 평가

민감도(Sensitivity)

질병이 있는 사람을 양성으로 판정하는 정도를 민감도(sensitivity)라고 하며 아래와 같이 구합니다.

  • 민감도 = AA+C\frac{ A } { A+C }

특이도(Specificity)

질병이 없는 사람을 음성으로 판정하는 정도를 특이도(specificity)라고 하며 아래와 같이 구합니다.

  • 특이도 = DB+D\frac{ D }{ B+D }

재현율(Recall)

민감도와 같습니다.

  • 재현율 = AA+C\frac{ A }{ A+C }

정밀도(Precision)

  • 정밀도 = AA+B\frac{ A }{ A+B }

정확도(Accuracy)

  • 정확도 = A+DA+B+C+D\frac{ A+D }{ A+B+C+D }

성능 지표

AUC ROC

양성, 음성 판단 기준을 변경하면 혼동행렬에서 A, B, C, D의 값이 달라지고 이것은 민감도와 특이도가 변한다는 것을 의미합니다. 그래서 양성, 음성 판단 기준을 조정해 가면서 아래와 같은 민감도, 특이도 그래프를 그릴 수 있습니다.

  • TP 비율(True Positive Rate) = 민감도
  • FP 비율(False Positive Rate) = 1 - 특이도

그래프 곡선 아래의 면적을 구함으로써 성능 평가 지표인 AUC(Area Under the Curve) ROC(Receiver Operating Characteristic)를 구합니다. 아래 그림의 그래프를 살펴 보면 AUC가 클수록 낮은 FP 비율을 유지하면서도 더 높은 TP 비율을 보여줍니다. 즉 서로 다른 두 장비의 진단 성능을 비교할 때 AUC가 큰 쪽의 진단 성능이 더 좋다고 말할 수 있습니다.

F1 Score

양성, 음성 판단 기준을 변경하면 혼동행렬에서 A, B, C, D의 값이 달라지고 이것은 Recall과 Precision이 변한다는 것을 의미합니다. 위양성과 위음성을 모두 고려하여 성능을 평가할 때 아래와 같이 계산한 F1 Score를 사용할 수 있습니다.

  • F1 Score = 2×Recall×PrecisionRecall+Precision2 \times \frac{ Recall \times Precision }{ Recall+Precision }

이것은 재현율과 정밀도의 조화평균과 같습니다.

Written with StackEdit.

댓글

이 블로그의 인기 게시물

Intel MKL 예제를 Microsoft Visual C++로 빌드하기

Intel MKL 예제를 Microsoft Visual C++로 빌드하기 인텔 프로세서 시스템에서 아래의 영역에 해당하는 수학 계산을 빠르게 수행하고자 한다면 Intel MKL 라이브러리를 사용할 수 있습니다. Linear Algebra Fast Fourier Transforms (FFT) Vector Statistics & Data Fitting Vector Math & Miscellaneous Solvers 이 문서는 Intel MKL 이 제공하는 예제 파일을 Microsoft Visual C++ 로 컴파일하고 링크하여 실행 파일을 만드는 과정을 소개합니다. 빌드 환경 다음은 이 문서를 작성하는 과정에서 Intel MKL 예제를 빌드하기 위하여 사용한 환경입니다. 시스템 운영체제: Windows 10 (64비트) 프로세서: Intel Core i7 설치 제품 IDE: Microsoft Visual Studio Community 2019 (version 16) 라이브러리: Intel Math Kernel Library 2019 Update 5 환경 변수 명령 프롬프트 창을 엽니다. 아래 스크립트를 실행하여 환경 변수 INCLUDE , LIB , 그리고 PATH 를 설정합니다. @echo off set CPRO_PATH=C:\Program Files (x86)\IntelSWTools\compilers_and_libraries\windows set MKLROOT=%CPRO_PATH%\mkl set REDIST=%CPRO_PATH%\redist set INCLUDE=%MKLROOT%\include;%INCLUDE% set LIB=%MKLROOT%\lib\intel64;%LIB% set PATH=%REDIST%\intel64\mkl;%PATH% REM for OpenMP intel thread set LIB=%CPRO_PATH%\compiler\lib...

Llama 3.2로 문장 생성 및 챗팅 완성 실습

Llama 3.2로 문장 생성 및 챗팅 완성 실습 Running Meta Llama on Linux 문서의 내용을 참고하여 Llama 3.2 1B 모델로 다음 두 가지 기능을 실습합니다. 문장 완성 챗팅 완성 실습 환경 Ubuntu 20.04.6 LTS Python 3.12.7 Llama3.2-1B, Llama3.2-1B-Instruct rustc 1.83.0 NVIDIA RTX 4090 24GB 프로그램 준비 실습에서 사용할 wget , md5sum 설치 sudo apt-get install wget sudo apt-get install md5sum NVIDIA GPU 설치 여부 확인 nvidia-smi 실습 디렉토리 만들기 mkdir llama3-demo cd llama3-demo git clone https://github.com/meta-llama/llama3.git Python 3.10 이상의 버전으로 가상환경 만들고 활성화 python -m venv llama-venv . llama-venv/bin/activate Rust 컴파일러 설치 How To Install Rust on Ubuntu 20.04 문서를 참고하여 Rust 컴파일러를 설치합니다. curl --proto '=https' --tlsv1.3 https://sh.rustup.rs -sSf | sh 위 명령을 실행하면 아래와 같이 세 가지 선택 옵션이 나타나는데 그냥 엔터를 쳐서 1번 옵션으로 진행합니다. ... 1) Proceed with installation (default) 2) Customize installation 3) Cancel installation 아래 명령을 실행하여 현재 쉘에 반영하고 설치된 컴파일러 버전을 확인합니다. source $HOME/.cargo/env rustc --version 의존 라이브러리 설치 pip install ...