"전역 민감도(Global Sensitivity)는 데이터셋 자체와는 무관하게, 오직 질의(query) 함수에 의해서만 결정된다"는 말의 의미를 차근차근 설명해 드리겠습니다. 1. 간단한 비유로 시작하기 학교 선생님이 학생들의 키를 조사한다고 상상해 봅시다. 선생님은 두 가지 질문(질의)을 할 수 있습니다. 질의 1: "우리 반 학생은 총 몇 명인가요?" (COUNT 질의) 질의 2: "우리 반 학생들의 키(cm)를 모두 더하면 얼마인가요?" (SUM 질의) 이때, '민감도'란 "학생 한 명이 전학을 오거나 갔을 때, 질문의 답이 얼마나 크게 변할 수 있는가?"를 의미합니다. 질의 1 (COUNT)의 경우: 학생 한 명이 추가되거나 빠지면, '총 학생 수'는 언제나 정확히 1만큼 변합니다. 우리 반에 어떤 학생들이 있는지, 그들의 키가 몇인지는 전혀 중요하지 않습니다. 이 질의의 민감도는 항상 1입니다. 질의 2 (SUM)의 경우: 학생 한 명이 추가된다고 상상해 봅시다. 만약 새로 온 학생의 키가 150cm라면 합계는 150만큼 변합니다. 만약 농구 선수처럼 키가 200cm인 학생이 온다면 합계는 200만큼 변합니다. 이 변화량은 '데이터셋에 추가될 수 있는 사람의 키 최댓값'에 따라 달라집니다. 만약 우리가 키의 범위를 0cm ~ 220cm로 제한한다면, 이 질의의 민감도는 최악의 경우(키가 220cm인 학생이 추가되는 경우) 220이 됩니다. 현재 학생들의 키가 몇인지 와는 상관없이, '키의 합계를 구한다'는 질의 자체가 가진 '최대 변동 가능성' 입니다. 이 비유에서 알 수 있듯이, 민감도는 '현재 데이터가 어떤가'가 아니라 '질의 자체가 가진 특성'에 의해 결정됩니다. 2. 전역 민감도의 정의와 핵심 아이디어 이제 조금 더 전문적으로 살펴보겠습니다. 이웃 데이터셋 (Neigh...